# -------------------------------------------- # CITATION file created with {cffr} R package # See also: https://docs.ropensci.org/cffr/ # -------------------------------------------- cff-version: 1.2.0 message: 'To cite package "UAHDataScienceUC" in publications use:' type: software license: MIT title: 'UAHDataScienceUC: Learn Clustering Techniques Through Examples and Code' version: 1.0.1 doi: 10.32614/CRAN.package.UAHDataScienceUC abstract: A comprehensive educational package combining clustering algorithms with detailed step-by-step explanations. Provides implementations of both traditional (hierarchical, k-means) and modern (Density-Based Spatial Clustering of Applications with Noise (DBSCAN), Gaussian Mixture Models (GMM), genetic k-means) clustering methods as described in Ezugwu et. al., (2022) . Includes educational datasets highlighting different clustering challenges, based on 'scikit-learn' examples (Pedregosa et al., 2011) . Features detailed algorithm explanations, visualizations, and weighted distance calculations for enhanced learning. authors: - family-names: Ruiz Sabajanes given-names: Eduardo email: eduardo.ruizs@edu.uah.es - family-names: Alcantara given-names: Roberto email: roberto.alcantara@edu.uah.es - family-names: Cuadrado Gallego given-names: Juan Jose email: jjcg@uah.es orcid: https://orcid.org/0000-0001-8178-5556 - family-names: Protsak given-names: Andriy email: andriy.protsak@edu.uah.es repository: https://andriyprotsak5.r-universe.dev commit: a4c1398e730627b6e0b9fcd927dff526c5c35eb7 contact: - family-names: Protsak given-names: Andriy email: andriy.protsak@edu.uah.es