Package: UAHDataScienceUC 1.0.1

UAHDataScienceUC: Learn Clustering Techniques Through Examples and Code

A comprehensive educational package combining clustering algorithms with detailed step-by-step explanations. Provides implementations of both traditional (hierarchical, k-means) and modern (Density-Based Spatial Clustering of Applications with Noise (DBSCAN), Gaussian Mixture Models (GMM), genetic k-means) clustering methods as described in Ezugwu et. al., (2022) <doi:10.1016/j.engappai.2022.104743>. Includes educational datasets highlighting different clustering challenges, based on 'scikit-learn' examples (Pedregosa et al., 2011) <https://jmlr.csail.mit.edu/papers/v12/pedregosa11a.html>. Features detailed algorithm explanations, visualizations, and weighted distance calculations for enhanced learning.

Authors:Eduardo Ruiz Sabajanes [aut], Roberto Alcantara [aut], Juan Jose Cuadrado Gallego [aut], Andriy Protsak Protsak [aut, cre], Universidad de Alcala [cph]

UAHDataScienceUC_1.0.1.tar.gz
UAHDataScienceUC_1.0.1.zip(r-4.5)UAHDataScienceUC_1.0.1.zip(r-4.4)UAHDataScienceUC_1.0.1.zip(r-4.3)
UAHDataScienceUC_1.0.1.tgz(r-4.5-any)UAHDataScienceUC_1.0.1.tgz(r-4.4-any)UAHDataScienceUC_1.0.1.tgz(r-4.3-any)
UAHDataScienceUC_1.0.1.tar.gz(r-4.5-noble)UAHDataScienceUC_1.0.1.tar.gz(r-4.4-noble)
UAHDataScienceUC_1.0.1.tgz(r-4.4-emscripten)UAHDataScienceUC_1.0.1.tgz(r-4.3-emscripten)
UAHDataScienceUC.pdf |UAHDataScienceUC.html
UAHDataScienceUC/json (API)
NEWS

# Install 'UAHDataScienceUC' in R:
install.packages('UAHDataScienceUC', repos = c('https://andriyprotsak5.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/andriyprotsak5/uahdatascienceuc/issues

Datasets:
  • db1 - Test Database 1
  • db2 - Test Database 2
  • db3 - Test Database 3
  • db4 - Test Database 4
  • db5 - Test Database 5
  • db6 - Test Database 6

On CRAN:

2.30 score 7 exports 2 dependencies

Last updated 3 days agofrom:a4c1398e73. Checks:4 OK, 4 NOTE. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKFeb 17 2025
R-4.5-winOKFeb 17 2025
R-4.5-macOKFeb 17 2025
R-4.5-linuxOKFeb 17 2025
R-4.4-winNOTEFeb 17 2025
R-4.4-macNOTEFeb 17 2025
R-4.3-winNOTEFeb 17 2025
R-4.3-macNOTEFeb 17 2025

Exports:agglomerative_clusteringcorrelation_clusteringdbscandivisive_clusteringgaussian_mixturegenetic_kmeanskmeans_

Dependencies:cliproxy

UAHDataScienceUC: A Comprehensive Guide to Clustering Algorithms

Rendered fromUAHDataScienceUC.Rmdusingknitr::rmarkdownon Feb 17 2025.

Last update: 2025-02-09
Started: 2025-02-09